Benzvalene-like Carboranes: Genuine Rule Breakers and Good Kinetic Stability.
Shi-Sheng WangYi-Hong DingPublished in: Inorganic chemistry (2024)
Substituents are widespread in chemistry, but it has remained quite difficult to reliably determine the thermodynamic and kinetic stabilities of substituted compounds, though they are key to helping establish a structural rule and synthetic viability, respectively. As an important class of valence isomers in the benzene family, benzvalene-like structures have been extensively studied in systems associated with electron-neutral (i.e., C, Si, Ge, Pb, and Sn) and electron-rich (e.g., P) skeletons. However, stable benzvalene-like examples associated with electron-deficient skeletons have been very limited, possibly due to the very complicated bonding patterns of electron-deficient elements. Here, we performed an extensive structural search at the density functional theory (DFT) and CBS-QB3 level for the well-known six-vertex dicarboranes (C 2 B 4 R 6 ), one of the central families of boranes and carboranes chemistry. We unexpectedly found that all of the previously reported benzvalene-like structures III (C 2 B 4 R 6 ) as the long-chased "rule breaker" examples of the Wade-Mingos rule (W-M rule) are not the lowest-lying structures. Promisingly, for the first time, we succeeded in identifying several substituted III as the genuine lowest-lying structures and thus true "rule breakers." Thus, "benzvalenes" present hitherto the fourth member of the lowest-lying structural patterns for the family of six-vertex dicarboranes. Moreover, the presently revealed good kinetic stability of III' (C 2 B 4 R 2 R' 4 ) over a wide range of substituents promoted us to recommend a novel kind of synthesizable carboranes beyond the Wade-Mingos rule, i.e., "benzvalene-like carboranes" with all of the classical skeletal atoms.