Login / Signup

A smartphone-based platform for ratiometric visualization of SARS-CoV-2 via an oligonucleotide probe.

Ting-Ting ZhaoWeizhen YanFengqi DongXinlong HuYanli XuZhenyu WangYating ShenWanrong WangYe ZhaoWenmei Wei
Published in: Mikrochimica acta (2022)
COVID-19 necessitates the development of reliable and convenient diagnostic tools. In this work, a facile 3D-printed smartphone platform was constructed that achieved reliable visual detection of SARS-CoV-2 by eliminating the effect of ambient light and fixing the camera position relative to the sample. The oligonucleotide probe is modified with orange-red-emitting TAMRA working as an internal standard and green-emitting FAM serving as a sensitive sensing agent. Under 365-nm UV excitation, the emission wavelengths of TAMRA and FAM are 580 nm and 518 nm, respectively. When the probes interact with the targets, the green fluorescence gradually restores while the orange-red fluorescence remains stable. Thus, a striking color transition from orange-red to green could be observed by the naked eye. The detection limit of SARS-CoV-2 nucleic acid is 0.23 nM, and the entire process of color change could be completed in 25 min. Furthermore, the RGB value analysis of the sample solution was conducted using a smartphone for reliable and reproducible discrimination of SARS-CoV-2. The proposed smartphone platform might establish a general method for visual detection of SARS-CoV-2 nucleic acid as well as other virus-related diseases.
Keyphrases