Inert metal induces the modulation of unsaturated aldehyde absorption mode for enhanced selective hydrogenation.
Qinglin LiuJiayi WuJiawei KangQian LiuPeisen LiaoGuang-Qin LiPublished in: Nanoscale (2022)
Selective hydrogenation of α,β-unsaturated aldehydes to obtain a high yield of unsaturated alcohols is important in industrial production. This is still a great challenge because it is thermally more favorable for the hydrogenation of CC than for the CO bond. Various strategies have been developed to optimize the catalysts for improving selectivity but are usually accompanied by the sacrifice of catalytic activity. Herein, we adopt the inert metal inducement strategy to synthesize a series of Ir-M alloy nanoparticle catalysts. The optimal catalyst IrCd 5 exhibits impressive catalytic performance in the selective hydrogenation of cinnamaldehyde, achieving 96.7% conversion with 94.3% selectivity for cinnamal alcohol, which is far superior to that of the Ir counterpart. Furthermore, the H 2 temperature-programmed desorption (H 2 -TPD) test, styrene-TPD test, surface valence band test and density functional theory calculations demonstrate that the adsorption mode of cinnamaldehyde shifted from parallel to vertical configurations after introducing an inert metal. Compared to Ir, the weaker adsorption of alkene and stronger adsorption of the substrate for IrCd 5 lead to the prior adsorption and hydrogenation of the CO bond, thus elevating the selectivity of the cinnamal alcohol. This strategy disperses precious metal nanoparticles effectively, maximizes atomic utilization, and improves the selectivity, which provides a new avenue to design bimetal alloy catalysts for the selective hydrogenation of α,β-unsaturated aldehydes.