Login / Signup

Bicuspid aortic valve morphology and hemodynamics by same-day echocardiography and cardiac MRI.

Jeesoo LeeNadia El HangoucheAshitha PathroseGilles SoulatAlex J BarkerJames D ThomasMichael Markl
Published in: The international journal of cardiovascular imaging (2022)
This study investigated the impact of bicuspid aortic valve (BAV) on valve morphology and motion as well as proximal and aortic hemodynamics using a same-day echocardiography and cardiac MRI. Transthoracic echocardiography, two-dimensional cine MRI of the aortic valve, and aortic 4D flow MRI were performed on the same day in 9 normofunctional BAV patients (age = 41 ± 12, 3 female), 4 BAV with moderate to severe aortic stenosis (AS) (age = 63 ± 5, 1 female), and 36 healthy tricuspid aortic valve controls (age = 52 ± 10, 21 female). Valve opening and closing timings and transvalvular peak velocity were measured using B-mode and Doppler echocardiogram, respectively. Valve orifice morphology at a fully-opened state was characterized using cine MRI. Ascending aortic (AAo) wall shear stress (WSS) was measured using 4D flow MRI data. Valve motion timings were similar between BAV and controls. BAV was associated with an increased orifice aspect ratio (1.44 ± 0.11 vs. 1.10 ± 0.13, P < 0.001), transvalvular peak velocity (1.5 ± 0.3 vs. 1.2 ± 0.2 m/s, P < 0.001) and maximum AAo WSS (1.62 ± 0.31 vs. 0.91 ± 0.24 Pa, P < 0.001). The increased orifice aspect ratio was associated with the increase in transvalvular peak velocity (r = 0.80, P < 0.0001) and maximum AAo WSS (r = 0.83, P < 0.0001). Transvalvular peak velocity was also positively correlated with maximum AAo WSS (r = 0.83, P < 0.0001). A same-day echo and MRI imaging allows for a comprehensive assessment of the impact of aortic valve disease on valve function and hemodynamics. In this pilot application to BAV, we found increased orifice aspect ratio may be responsible for increased transvalvular peak velocity and maximum AAo WSS.
Keyphrases