Login / Signup

Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle.

Rasmus JensenJoachim NielsenNiels Ørtenblad
Published in: The Journal of physiology (2020)
Skeletal muscle glycogen content is associated with muscle function and fatigability. However, little is known about the physiological link between glycogen content and muscle function. Here we aimed to investigate the importance of glycogenolytically derived ATP per se on muscle force and action potential (AP) repriming period, i.e. the time before a second AP can be produced (indicative of Na+ ,K+ -ATPase activity). Single fibres from rat extensor digitorum longus muscles were isolated and mechanically skinned in order to investigate force production and the AP repriming period while global ATP and PCr concentrations were kept high. The importance of glycogenolytically derived ATP was studied by inhibition of glycogen phosphorylase (1,4-dideoxy-1,4-imino-d-arabinitol (DAB; 2 mm) or CP-316,819 (CP; 10 µm)) or glycogen removal (amyloglucosidase, 20 U ml-1 ). Tetanic force decreased by (mean (SD)) 21 (15)% (P < 0.001) and 76 (28)% (DAB) or 94 (6)% (CP, P < 0.001) in well-polarized and partially depolarized fibres, respectively. In depolarized fibres, twitch force decreased by 16 (10)% and 55 (26)% with DAB and CP, respectively, with no effect in well-polarized fibres (84 (10)%, P = 0.14). There was no effect of glycogen phosphorylase inhibition on repriming period in well-polarized fibres (median (25th, 75th percentile): 5 (4, 5) vs. 4 (4, 5) ms, P = 0.26), while the repriming period was prolonged from 6 (5, 7) to 8 (7, 10) ms (P = 0.01) in partially depolarized fibres. In line with this, glycogen removal increased repriming period from 5 (5, 6) to 6 (5, 7) ms (P = 0.003) in depolarized fibres. Together, these data strongly indicate that blocking glycogenolysis attenuates Na+ ,K+ -ATPase activity, which in turn increases the repriming period and reduces force, demonstrating a functional link between glycogenolytically derived ATP and force production.
Keyphrases