Radical Stereochemistry: Accounting for Diastereomers in Kinetic Mechanism Development.
Andreas V CopanKevin B MooreSarah N ElliottClayton R MulvihillLuna Pratali MaffeiStephen J KlippensteinPublished in: The journal of physical chemistry. A (2024)
Recent work in combustion and atmospheric chemistry has revealed cases in which diastereomers must be distinguished to accurately model a reacting flow. This paper presents an open-source framework for introducing such stereoisomer resolution into a kinetic mechanism. We detail our definitions and algorithms for labeling and enumerating the stereoisomers of a molecule and then generalize our system to describe the transition state (TS) of a reaction. This allows for the stereospecific enumeration of reactants and products while accounting for "fleeting" stereochemistry that is unique to the TS. We also present the AutoMech Chemical Identifier (AMChI), an InChI-like string identifier that accounts for stereocenters omitted by InChI. This identifier is extended to describe the TSs of reactions, providing a universal lookup key for specific reaction channels. The final piece of our methodology is an analytic formula to remove redundancy from a stereoresolved mechanism when its enantiomers exist as a racemic mixture, making it as compact as possible while fully accounting for the differences between diastereomers. In applying our methodology to two subsets of the NUIGMech1.1 mechanism, we find that our approach reduces the extra species added for large-fuel oxidation from 2231 (133%, full expansion) to 694 (41%, nonredundant expansion). We also find that for pyrolysis more than a quarter of the species in the expanded mechanism cannot be properly described by an InChI string, requiring an AMChI string to communicate their identity. Finally, we find that roughly one-quarter of the large-fuel oxidation reactions and one-third of the pyrolysis reactions include fleeting TS stereochemistry, which may have relevant effects on their kinetics.