Login / Signup

Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome.

Oksana M SubachNatalia V BarykinaKonstantin V AnokhinKiryl D PiatkevichFedor V Subach
Published in: International journal of molecular sciences (2019)
A variety of genetically encoded calcium indicators are currently available for visualization of calcium dynamics in cultured cells and in vivo. Only one of them, called NIR-GECO1, exhibits fluorescence in the near-infrared region of the spectrum. NIR-GECO1 is engineered based on the near-infrared fluorescent protein mIFP derived from bacterial phytochromes. However, NIR-GECO1 has an inverted response to calcium ions and its excitation spectrum is not optimal for the commonly used 640 nm lasers. Using small near-infrared bacterial phytochrome GAF-FP and calmodulin/M13-peptide pair, we developed a near-infrared calcium indicator called GAF-CaMP2. In vitro, GAF-CaMP2 showed a positive response of 78% and high affinity (Kd of 466 nM) to the calcium ions. It had excitation and emission maxima at 642 and 674 nm, respectively. GAF-CaMP2 had a 2.0-fold lower brightness, 5.5-fold faster maturation and lower pH stability compared to GAF-FP in vitro. GAF-CaMP2 showed 2.9-fold higher photostability than smURFP protein. The GAF-CaMP2 fusion with sfGFP demonstrated a ratiometric response with a dynamic range of 169% when expressed in the cytosol of mammalian cells in culture. Finally, we successfully applied the ratiometric version of GAF-CaMP2 for the simultaneous visualization of calcium transients in three organelles of mammalian cells using four-color fluorescence microscopy.
Keyphrases
  • binding protein
  • photodynamic therapy
  • quantum dots
  • fluorescent probe
  • energy transfer
  • protein kinase
  • single molecule
  • high resolution
  • oxidative stress
  • induced apoptosis
  • nitric oxide
  • cell cycle arrest