Mercury toxicity in pregnant and lactating rats: zinc and N-acetylcysteine as alternative of prevention.
Vitor Antunes OliveiraNayara de Souza da CostaMariana MesquitaTaíse Fonseca PedrosoTiago da Luz FiuzaNilce Coelho PeixotoMaria Ester PereiraCláudia Sirlene OliveiraPublished in: Environmental science and pollution research international (2020)
This study evaluated the toxic effects of inorganic mercury (Hg) in pregnant and lactating rats, as well as the possible protective effect of zinc (Zn) and N-acetylcysteine (NAC). Pregnant and lactating rats were pre-treated with ZnCl2 (27 mg/kg) and/or NAC (5 mg/kg) and after 24 h, they were exposed to HgCl2 (10 mg/kg). Animals were sacrificed 24 h after Hg exposure, and biochemical tests and metal determination were performed. Regarding pregnant rats, Hg exposure caused kidney, blood, and placenta δ-aminolevulinic acid dehydratase (δ-ALA-D) activity inhibition, and the pre-treatments showed a tendency of protection. Moreover, all the animals exposed to Hg presented high Hg levels in the kidney, liver, and placenta when compared with control group. Pregnant rats pre-exposed to Zn (Zn-Hg and Zn/NAC-Hg groups) presented an increase in hepatic metallothionein levels. Therefore, lactating rats exposed to Hg presented renal and blood δ-ALA-D inhibition; the pre-treatments showed a tendency to prevent the renal δ-ALA-D inhibition and prevented the blood δ-ALA-D inhibition caused by Hg. Lactating rats exposed to Hg presented high Hg levels in the kidney and liver. These results showed that 10 mg/kg of HgCl2 causes biochemistry alterations in pregnant and lactating rats, and Zn and NAC present promising results against these damages.