Login / Signup

Phase I/II Trial of Vemurafenib in Dogs with Naturally Occurring, BRAF-mutated Urothelial Carcinoma.

Paul RossmanTanja S ZabkaAudrey RupleDietrich TuerckJosé A Ramos-VaraLiling LiuRodrigo MohallemMark MerchantJackeline FrancoChristopher M FulkersonKetaki P BhideMatthew BreenUma K AryalElaine MurrayNoel DybdalSagar M UtturkarLindsey M FourezAlexander W EnstromDeepika DhawanDeborah W Knapp
Published in: Molecular cancer therapeutics (2021)
BRAF-targeted therapies including vemurafenib (Zelboraf) induce dramatic cancer remission; however, drug resistance commonly emerges. The purpose was to characterize a naturally occurring canine cancer model harboring complex features of human cancer, to complement experimental models to improve BRAF-targeted therapy. A phase I/II clinical trial of vemurafenib was performed in pet dogs with naturally occurring invasive urothelial carcinoma (InvUC) harboring the canine homologue of human BRAF V600E The safety, MTD, pharmacokinetics, and antitumor activity were determined. Changes in signaling and immune gene expression were assessed by RNA sequencing and phosphoproteomic analyses of cystoscopic biopsies obtained before and during treatment, and at progression. The vemurafenib MTD was 37.5 mg/kg twice daily. Anorexia was the most common adverse event. At the MTD, partial remission occurred in 9 of 24 dogs (38%), with a median progression-free interval of 181 days (range, 53-608 days). In 18% of the dogs, new cutaneous squamous cell carcinoma and papillomas occurred, a known pharmacodynamic effect of vemurafenib in humans. Upregulation of genes in the classical and alternative MAPK-related pathways occurred in subsets of dogs at cancer progression. The most consistent transcriptomic changes were the increase in patterns of T lymphocyte infiltration during the first month of vemurafenib, and of immune failure accompanying cancer progression. In conclusion, the safety, antitumor activity, and cutaneous pharmacodynamic effects of vemurafenib, and the development of drug resistance in dogs closely mimic those reported in humans. This suggests BRAF-mutated canine InvUC offers an important complementary animal model to improve BRAF-targeted therapies in humans.
Keyphrases