Decoration of Au Nanoparticles over LaFeO 3 : A High Performance Electrocatalyst for Total Water Splitting.
Anup KuchipudiRagunath MadhuPugalendhi ArunmuthukumarSwaminathan SundarravalliGosipathala SreedharSubrata KunduPublished in: Inorganic chemistry (2023)
Electrocatalytic water splitting has emerged as a promising approach for clean and sustainable hydrogen production. The LaFeO 3 perovskite structure exhibits intriguing properties such as mixed ionic-electronic conductivity, high stability, and abundant active sites for electrocatalysis. However, its OER and HER activities are limited by the sluggish kinetics of these reactions. To overcome this limitation, Au nanoparticles (NPs) are decorated onto the surface of LaFeO 3 through a facile synthesis method. The Au NPs on the LaFeO 3 surface provide additional active sites for water splitting reactions, promoting the adsorption and activation of water molecules. The presence of Au enhances the charge transfer kinetics via the heterostructure between Au NPs and LaFeO 3 and facilitates electron transport during the OER and HER process. The catalyst requires only 318 and 199 mV as overpotential to attain a 50 mA cm -2 current density in 1 M KOH solution. Our results demonstrate that the Au@LaFeO 3 catalyst exhibits significantly improved electrocatalytic activity compared to pure LaFeO 3 and other catalysts reported in the literature. The enhanced performance is attributed due to the synergistic effects between Au NPs and LaFeO 3 , including an increased surface area, improved conductivity, and optimized surface energetics. Overall, the Au-decorated LaFeO 3 catalyst presents a promising candidate for efficient electrocatalytic water splitting, providing a pathway for sustainable hydrogen production. The insights gained from this study contribute to the development of advanced catalysts for renewable energy technologies and pave the way for future research in the field of electrochemical water splitting.