Login / Signup

Catalytic Access to Diastereometrically Pure Four- and Five-Membered Silyl-Heterocycles Using Transborylation.

Dominic R WillcoxEmanuele CoccoGary S NicholArmando CarloneStephen P Thomas
Published in: Angewandte Chemie (International ed. in English) (2024)
Silyl-heterocycles offer a unique handle to expand and explore chemical space, reactivity, and functionality. The shortage of catalytic methods for the preparation of diverse and functionalized silyl-heterocycles however limits widespread exploration and exploitation. Herein the borane-catalyzed intramolecular 1,1-carboboration of silyl-alkynes has been developed for the synthesis of 2,3-dihydrosilolyl and silylcyclobut-2-enyl boronic esters. Successful, catalytic carboboration has been achieved on a variety of functionally diverse silyl-alkynes, using a borane catalyst and transborylation-enabled turnover. Mechanistic studies, including 13 C-labelling, computational studies, and single-turnover experiments, suggest a reaction pathway proceeding by 1,2-hydroboration, 1,1-carboboration, and transborylation to release the alkenyl boronic ester product and regenerate the borane catalyst.
Keyphrases
  • room temperature
  • ionic liquid
  • bone mineral density
  • case control
  • reduced graphene oxide
  • highly efficient
  • crystal structure
  • molecularly imprinted
  • quantum dots
  • carbon dioxide
  • gold nanoparticles
  • energy transfer