Login / Signup

MXene (Ti3C2Tx) and Carbon Nanotube Hybrid-Supported Platinum Catalysts for the High-Performance Oxygen Reduction Reaction in PEMFC.

Chenxi XuChanchan FanXiaole ZhangHaotian ChenTerence Xiaoteng LiuZhaoming FuRanran WangTao HongJigui Cheng
Published in: ACS applied materials & interfaces (2020)
The metal-support interaction offers electronic, compositional, and geometric effects that could enhance catalytic activity and stability. Herein, a high corrosion resistance and an excellent electrical conductivity MXene (Ti3C2Tx) hybrid with a carbon nanotube (CNT) composite material is developed as a support for Pt. Such a composite catalyst enhances durability and improved oxygen reduction reaction activity compared to the commercial Pt/C catalyst. The mass activity of Pt/CNT-MXene demonstrates a 3.4-fold improvement over that of Pt/C. The electrochemical surface area of Pt/CNT-Ti3C2Tx (1:1) catalysts shows only 6% drop with respect to that in Pt/C of 27% after 2000 cycle potential sweeping. Furthermore, the Pt/CNT-Ti3C2Tx (1:1) is used as a cathode catalyst for single cell and stack, and the maximum power density of the stack reaches 138 W. The structure distortion of the Pt cluster induced by MXene is disadvantageous to the desorption of O atoms. This issue can be solved by adding CNT on MXene to stabilize the Pt cluster. These remarkable catalytic performances could be attributed to the synergistic effect between Pt and CNT-Ti3C2Tx.
Keyphrases
  • carbon nanotubes
  • highly efficient
  • single cell
  • ionic liquid
  • reduced graphene oxide
  • metal organic framework
  • rna seq
  • climate change
  • ion batteries