Login / Signup

Effects of Tryptophan and Tyrosine on the Transformation of Monophenols in Chromophoric Dissolved Organic Matter Solutions: Enhance the Forward Transformation and Reduce the Reverse Transformation.

Ruiya ZhouXu Zhang
Published in: Environmental science & technology (2024)
Tryptophan (Trp) and tyrosine (Tyr) are the primary precursors of protein-like components in dissolved organic matter. Phenolic compounds are ubiquitous in aquatic environments and are considered the main electron donor in chromophoric dissolved organic matter (CDOM). Our results showed that Trp and Tyr (50 μM) enhanced the transformation of six monophenols (20 μM) with varying numbers of -CH 3 and -OCH 3 substituent groups by a factor of 1.0-1.8. The enhancement factor increased with the ratio of Trp (Tyr) to monophenols. In four different CDOM solutions (5 mg C/L, pH 8.0), a maximum enhancement factor of 3.2-6.7 was observed at a Trp/monophenol concentration ratio of 50. Conversely, monophenols greatly inhibited the transformation of Trp or Tyr. The enhancement factor decreased as the initial pH increased from 3.0 to 10.0. Additionally, the enhancement factor was not directly proportional to the oxidation potential of monophenol. We propose that the promotion effects are generated through the direct oxidation of monophenols by Trp (Tyr) radicals as well as through the reaction between Trp (Tyr) radicals and the one-electron reductant of CDOM.
Keyphrases
  • hydrogen peroxide
  • electron transfer
  • nitric oxide
  • small molecule
  • climate change
  • binding protein
  • solar cells