Login / Signup

Optical Properties of Tensilely Strained Ge Nanomembranes.

Roberto PaiellaMax G Lagally
Published in: Nanomaterials (Basel, Switzerland) (2018)
Group-IV semiconductors, which provide the leading materials platform of micro- electronics, are generally unsuitable for light emitting device applications because of their indirect- bandgap nature. This property currently limits the large-scale integration of electronic and photonic functionalities on Si chips. The introduction of tensile strain in Ge, which has the effect of lowering the direct conduction-band minimum relative to the indirect valleys, is a promising approach to address this challenge. Here we review recent work focused on the basic science and technology of mechanically stressed Ge nanomembranes, i.e., single-crystal sheets with thicknesses of a few tens of nanometers, which can sustain particularly large strain levels before the onset of plastic deformation. These nanomaterials have been employed to demonstrate large strain-enhanced photoluminescence, population inversion under optical pumping, and the formation of direct-bandgap Ge. Furthermore, Si-based photonic-crystal cavities have been developed that can be combined with these Ge nanomembranes without limiting their mechanical flexibility. These results highlight the potential of strained Ge as a CMOS-compatible laser material, and more in general the promise of nanomembrane strain engineering for novel device technologies.
Keyphrases
  • high speed
  • light emitting
  • public health
  • magnetic resonance imaging
  • high resolution
  • mass spectrometry
  • computed tomography
  • high throughput
  • machine learning
  • big data
  • human health
  • solid state