Determinants of RPA megafoci localization to the nuclear periphery in response to replication stress.
Seong Min KimSusan L ForsburgPublished in: G3 (Bethesda, Md.) (2022)
Upon replication stress, ssDNA, coated by the ssDNA-binding protein RPA, accumulates and generates a signal to activate the replication stress response. Severe replication stress induced by the loss of minichromosome maintenance helicase subunit Mcm4 in the temperature-sensitive Schizosaccharomyces pombe degron mutant (mcm4-dg) results in the formation of a large RPA focus that is translocated to the nuclear periphery. We show that resection and repair processes and chromatin remodeler Swr1/Ino80 are involved in the large RPA foci formation and its relocalization to nuclear periphery. This concentrated accumulation of RPA increases the recruitment of Cds1 to chromatin and results in an aberrant cell cycle that lacks MBF-mediated G1/S accumulation of Tos4. These findings reveal a distinct replication stress response mediated by localized accumulation of RPA that allows the evasion of cell cycle arrest.