A Study of the Localized Ceria Coating Deposition on Fe-Rich Intermetallics in an AlSiFe Cast Alloy.
Salil SainisCaterina ZanellaPublished in: Materials (Basel, Switzerland) (2021)
Corrosion inhibiting conversion coating formation is triggered by the activity of micro-galvanic couples in the microstructure and subsequent local increase in pH at cathodic sites, which in the case of aluminium alloys are usually intermetallics. Ceria coatings are formed spontaneously upon immersion of aluminium alloys in a cerium conversion coating solution, the high pH gradient in the vicinity of intermetallics drives the local precipitation of ceria conversion compounds. Cu-rich intermetallics demonstrate a highly cathodic nature and have shown the local precipitation reaction to occur readily. Fe-rich intermetallics are, however, weaker cathodes and have shown varied extents of localized deposits and are in focus in the current work. Model cast Al-7wt.%Si alloys have been designed with 1 wt.% Fe, solidified at different cooling rates to achieve two different microstructures, with big and small intermetallics, respectively. Upon subjecting the two microstructures to the same conversion coating treatment (immersion in a 0.1 M CeCl3 solution) for a short period of 2 h, preferential heavy deposition on the boundaries of the big intermetallics and light deposition on the small intermetallics was observed. Based on these observations, a mechanism of localized coating initiation at these Fe-rich intermetallic particles (IM) is proposed.