Login / Signup

A parametrically programmable delay line for microwave photons.

Takuma MakiharaNathan LeeYudan GuoWenyan GuanAmir H Safavi-Naeini
Published in: Nature communications (2024)
Delay lines that store quantum information are crucial for advancing quantum repeaters and hardware efficient quantum computers. Traditionally, they are realized as extended systems that support wave propagation but provide limited control over the propagating fields. Here, we introduce a parametrically addressed delay line for microwave photons that provides a high level of control over the stored pulses. By parametrically driving a three-wave mixing circuit element that is weakly hybridized with an ensemble of resonators, we engineer a spectral response that simulates that of a physical delay line, while providing fast control over the delay line's properties. We demonstrate this novel degree of control by choosing which photon echo to emit, translating pulses in time, and even swapping two pulses, all with pulse energies on the order of a single photon. We also measure the noise added from our parametric interactions and find it is much less than one photon.
Keyphrases