Alternative splicing of a barley gene results in an excess-tillering and semi-dwarf mutant.
Wei HuaCong TanJingzhong XieJinghuan ZhuYi ShangJianming YangXiao-Qi ZhangXiaojian WuJunmei WangChengdao LiPublished in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2019)
An excess-tillering semi-dwarf gene Hvhtd was identified from an EMS-induced mutant in barley and alternative splicing results in excess-tillering semi-dwarf traits. Tillering and plant height are important traits determining plant architecture and grain production in cereal crops. This study identified an excess-tillering semi-dwarf mutant (htd) from an EMS-treated barley population. Genetic analysis of the F1, F2, and F2:3 populations showed that a single recessive gene controlled the excess-tillering semi-dwarf in htd. Using BSR-Seq and gene mapping, the Hvhtd gene was delimited within a 1.8 Mb interval on chromosome 2HL. Alignment of the RNA-Seq data with the functional genes in the interval identified a gene HORVU2Hr1G098820 with alternative splicing between exon2 and exon3 in the mutant, due to a G to A single-nucleotide substitution at the exon and intron junction. An independent mutant with a similar phenotype confirmed the result, with alternative splicing between exon3 and exon4. In both cases, the alternative splicing resulted in a non-functional protein. And the gene HORVU2Hr1G098820 encodes a trypsin family protein and may be involved in the IAA signaling pathway and differs from the mechanism of Green Revolution genes in the gibberellic acid metabolic pathway.