Development and Characterization of Polylactic Acid (PLA)-Based Nanocomposites Used for Food Packaging.
Andrei MoldovanMariana PacurarDoina ProdanMircea RusuDorin PopaAdrian Catalin TautIoan PeteanDorin BomboşRami DoukehOvidiu NemeșPublished in: Polymers (2023)
The present study is focused on polylactic acid (PLA) blending with bio nanoadditives, such as Tonsil ® (clay) and Aerosil ® , to obtain nanocomposites for a new generation of food packaging. The basic composition was enhanced using Sorbitan oleate (E494) and Proviplast as plasticizers, increasing the composite samples' stability and their mechanical strength. Four mixtures were prepared: S1 with Tonsil ® ; S2 with Aerosil ® ; S3 with Aerosil ® + Proviplast; and S4 with Sabosorb. They were complexly characterized by FT-IR spectroscopy, differential scanning calorimetry, mechanical tests on different temperatures, and absorption of the saline solution. FTIR shows a proper embedding of the filler component into the polymer matrix and DSC presents a good stability at the living body temperature for all prepared samples. Micro and nanostructural aspects were evidenced by SEM and AFM microscopy, revealing that S3 has the most compact and uniform filler distribution and S4 has the most irregular one. Thus, S3 evidenced the best diametral tensile strength and S4 evidenced the weakest values. All samples present the best bending strength at 18 °C and fair values at 4 °C, with the best values being obtained for the S1 sample and the worst for S4. The lack of mechanical strength of the S4 sample is compensated by its best resistance at liquid penetration, while S1 is more affected by the liquid infiltrations. Finally, results show that PLA composites are suitable for biodegradable and disposable food packages, and the desired properties could be achieved by proper adjustment of the filler proportions.