Login / Signup

Light-Triggered Transformation of Molecular Baskets into Organic Nanoparticles.

Sarah E BorderRadoslav Z PavlovićLei ZhiquanMichael J GuntherHan WangHonggang CuiJovica D Badjić
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2018)
Discovering novel and functional photoresponsive materials is of interest for improving controlled release of molecules and scavenging toxic compounds for cleaning our environment or designing chemosensors. In this study, we report on the photoinduced decarboxylation of basket 16- , containing three glutamic acids at its rim. This concave compound is, in an aqueous environment (30 mm phosphate buffer at pH 7.0), monomeric (1 H NMR DOSY, DLS) with glutamic acid residues randomly oriented about its rim (1 H NMR and MM-OPLS3). The irradiation (300 nm) of 16- leads to the exclusive removal of its α-carboxylates to give amphiphilic 23- possessing γ-carboxylates. The photochemical transformation is a consecutive reaction with mono- and bis-decarboxylated products observed with 1 H NMR spectroscopy and ESI mass spectrometry. Amphiphilic 23- is a preorganized molecule (MM-OPLS3) that, in water, aggregates into organic nanoparticles (ca. 50-200 nm in diameter; DLS, TEM and cryo-TEM) having a critical aggregation concentration of 12 μm (UV/Vis). As the transition of monomeric 16- into nanoparticulate 23- is triggered with light, we reasoned that stimuli-responsive formation of the soft material lends itself to nanotechnology applications such as controlled release or scavenging of targeted compounds.
Keyphrases