Login / Signup

Quantum Chemical Calculation of Molecular and Periodic Peptide and Protein Structures.

Sarah SchmitzJakob SeibertKatja OstermeirAndreas HansenAndreas H GöllerStefan Grimme
Published in: The journal of physical chemistry. B (2020)
Special-purpose classical force fields (FFs) provide good accuracy at very low computational cost, but their application is limited to systems for which potential energy functions are available. This excludes most metal-containing proteins or those containing cofactors. In contrast, the GFN2-xTB semiempirical quantum chemical method is parametrized for almost the entire periodic table. The accuracy of GFN2-xTB is assessed for protein structures with respect to experimental X-ray data. Furthermore, the results are compared with those of two special-purpose FFs, HF-3c, PM6-D3H4X, and PM7. The test sets include proteins without any prosthetic groups as well as metalloproteins. Crystal packing effects are examined for a set of smaller proteins to validate the molecular approach. For the proteins without prosthetic groups, the special purpose FF OPLS-2005 yields the smallest overall RMSD to the X-ray data but GFN2-xTB provides similarly good structures with even better bond-length distributions. For the metalloproteins with up to 5000 atoms, a good overall structural agreement is obtained with GFN2-xTB. The full geometry optimizations of protein structures with on average 1000 atoms in wall-times below 1 day establishes the GFN2-xTB method as a versatile tool for the computational treatment of various biomolecules with a good accuracy/computational cost ratio.
Keyphrases