Login / Signup

Fertilization regimes affecting nickel phytomining efficiency on a serpentine soil in the temperate climate zone.

Christina HipfingerTheresa RosenkranzJulia ThüringerMarkus Puschenreiter
Published in: International journal of phytoremediation (2020)
Phytomining of nickel (Ni) refers to cropping of selected Ni hyperaccumulator plants on Ni-rich serpentine soils. In this study, the effect of different fertilization regimes on the Ni yield of Odontarrhena chalcidica (syn. Alyssum murale) was evaluated within a field experiment on an Austrian serpentine site. Odontarrhena chalcidica was planted in six treatments: control, fertilized by mineral fertilizer, cow manure, pig manure, compost, and planted at higher plant density. A positive fertilization effect was observed: plants treated with NPK and pig manure produced significantly higher biomass (1.9 t ha-1 for both treatments). Nickel yields showed a clear trend for enhancement upon fertilization (cow manure: 22.7 kg Ni ha-1, pig manure: 21.3 kg Ni ha-1, NPK: 20.6 kg Ni ha-1), but were not significantly different from the control. As a result of Ni accumulation in plants, DTPA-extractable Ni pools were significantly lower after harvesting (average 37.3 mg kg Ni-DTPA-1) compared to the time of planting (average 45.6 mg kg Ni-DTPA-1) in organic fertilization treatments and plots of higher plant density. The application of organic fertilizers contributed also to improved soil quality. We conclude that fertilization can increase the phytomining potential of field-grown Ni hyperaccumulator plants in a soil-friendly manner.
Keyphrases
  • metal organic framework
  • transition metal
  • anaerobic digestion
  • sewage sludge
  • heavy metals
  • climate change
  • quality improvement
  • wastewater treatment
  • risk assessment
  • reduced graphene oxide