Perovskite/Poly(3-hexylthiophene)/Graphene Multiheterojunction Phototransistors with Ultrahigh Gain in Broadband Wavelength Region.
Chao XieFeng YanPublished in: ACS applied materials & interfaces (2017)
Organometal halide perovskite materials have attracted much attention recently for their excellent optoelectronic properties. Here, we report an ultrasensitive phototransistor based on the multiheterojunction of CH3NH3PbI3-xClx perovskite/poly(3-hexylthiophene)/graphene for the first time. Since the photoexcited electrons and holes are effectively separated by the poly(3-hexylthiophene) layer, high-density electrons are trapped in the perovskite layer, leading to a strong photogating effect on the underlying graphene channel. The phototransistor demonstrates an unprecedented ultrahigh responsivity of ∼4.3 × 109 A/W and a gain approaching 1010 electrons per photon, respectively. More importantly, the device is sensitive in a broadband wavelength region from ultraviolet to near-infrared, which has not yet been achieved with other perovskite photodetectors. It is expected that the novel perovskite phototransistor will find promising applications as photodetection and imaging devices in the future.