Login / Signup

Isolation of a 16π-Electrons 1,4-Diphosphinine-1,4-diide with a Planar C4 P2 Ring.

Dennis RottschäferBeate NeumannHans-Georg StammlerTetiana SergeievaDiego M AndradaRajendra S Ghadwal
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
Herein, we report the first 1,4-diphosphinine-1,4-diide compound [(ADCPh )P]2 (5-Ph) (ADCPh =PhC{(NDipp)C}2 ; Dipp=2,6-iPr2 C6 H3 ) derived from an anionic dicarbene (ADCPh ) as a red crystalline solid. Compound 5-Ph containing a 16π-electron planar fused-tricyclic ring system was obtained by the 4e reduction of [(ADCPh )PCl2 ]2 (4-Ph) with Mg (or KC8 ) in a quantitative yield. Experimental and computational results imply that the central 8π-electrons C4 P2 ring of 5-Ph, which is fused between two 6π-electrons C3 N2 aromatic rings, is antiaromatic. Thus, each of the phosphorus atoms of 5-Ph has two electron-lone-pairs, one in a p-type orbital is in conjugation with the C=C bonds of the C4 P2 ring, while the second resides in a σ-symmetric orbital. This can be shown with the gold complex [(ADCPh )P(AuCl)2 ]2 (6-Ph) obtained by reacting 5-Ph with (Me2 S)AuCl. A mixture of 5-Ph and 4-Ph undergoes comproportionation in the presence of MgCl2 to form the intermediate oxidation state compound [(ADCAr )P]2 (MgCl4 ) (7-Ph), which is an aromatic species.
Keyphrases
  • risk assessment
  • mass spectrometry
  • nitric oxide
  • amino acid