Login / Signup

Restoring spatiotemporal variability to enhance the capacity for dispersal-limited species to track climate change.

Gregory A BackusChristopher F ClementsMarissa L Baskett
Published in: Ecology (2024)
Climate refugia are areas where species can persist through climate change with little to no movement. Among the factors associated with climate refugia are high spatial heterogeneity, such that there is only a short distance between current and future optimal climates, as well as biotic or abiotic environmental factors that buffer against variability in time. However, these types of climate refugia may be declining due to anthropogenic homogenization of environments and degradation of environmental buffers. To quantify the potential for restoration of refugia-like environmental conditions to increase population persistence under climate change, we simulated a population's capacity to track their temperature over space and time given different levels of spatial and temporal variability in temperature. To determine how species traits affected the efficacy of restoring heterogeneity, we explored an array of values for species' dispersal ability, thermal tolerance, and fecundity. We found that species were more likely to persist in environments with higher spatial heterogeneity and lower environmental stochasticity. When simulating a management action that increased the spatial heterogeneity of a previously homogenized environment, species were more likely to persist through climate change, and population sizes were generally higher, but there was little effect with mild temperature change. The benefits of heterogeneity restoration were greatest for species with limited dispersal ability. In contrast, species with longer dispersal but lower fecundity were more likely to benefit from a reduction in environmental stochasticity than an increase in spatial heterogeneity. Our results suggest that restoring environments to refugia-like conditions could promote species' persistence under the influence of climate change in addition to conservation strategies such as assisted migration, corridors, and increased protection.
Keyphrases
  • climate change
  • human health
  • single cell
  • genetic diversity
  • risk assessment
  • high resolution
  • high throughput
  • dna methylation
  • genome wide
  • life cycle
  • arabidopsis thaliana