Development of Drug-Loaded PCL@MOF Film Enclosed in a Photo Polymeric Container for Sustained Release.
Shubhangi ShuklaNaveen Narasimhachar JoshiSachin KadianRoger J NarayanPublished in: ACS applied bio materials (2024)
The programmed fabrication of oral dosage forms is associated with several challenges such as controlled loading and disintegration. To optimize the drug payload, excipient breakdown, and site-specific sustained release of hydrophobic drug (sulfamethoxazole, SM), we propose the development of acrylate polymer tablets enclosed with drug-loaded polycaprolactone (PCL) films. The active pharmaceutical ingredient (API) is physisorbed into the porous iron (Fe)-based metal-organic framework (MOF) and later converted to tangible PCL films, which, upon folding, are incorporated into the acrylate polymer matrices (P1/P2/P3). X-ray powder diffraction (XRPD) analysis and scanning electron microscopy (SEM) micrographs confirmed the stability and homogeneous distribution of MOF within the 50 μm thick film. Adsorption-desorption measurements at ambient temperatures confirmed the decrease in the BET surface area of PCL films by 40%, which was ∼3.01 m/g, and pore volume from 30 to 9 nm. The decrease in adsorption and surface parameters could confirm the gradual accessibility of SM molecules once exposed to a degrading environment. Fourier transform infrared (FTIR) analyses of in vitro dissolution confirmed the presence of the drug in the MOF-PCL film-enclosed tablets and concluded the cumulative SM release at pH ∼ 8.2 which followed the order SM@Fe-MOF < P1/P2/P3 < PCL-SM@Fe-MOF < P1/PCL-SM@Fe-MOF < P3/PCL-SM@Fe-MOF. The results of the study indicate that the P3/PCL-SM@Fe-MOF assembly has potential use as a biomedical drug delivery alternative carrier for effective drug loading and stimuli-responsive flexible release to attain high bioavailability.
Keyphrases
- metal organic framework
- drug delivery
- electron microscopy
- room temperature
- cancer therapy
- adverse drug
- high resolution
- air pollution
- mass spectrometry
- aqueous solution
- climate change
- magnetic resonance
- computed tomography
- risk assessment
- reduced graphene oxide
- ionic liquid
- particulate matter
- microbial community
- antibiotic resistance genes