Login / Signup

Taurine attenuates Cr(VI)-induced cellular and DNA damage: an in vitro study using human erythrocytes and lymphocytes.

Nazim HusainRiaz Mahmood
Published in: Amino acids (2019)
Hexavalent chromium [(Cr(VI)] is widely used in several industries, but human exposure results in multiple organ toxicity. Enhanced generation of free radicals and reactive species is thought to play a key role in Cr(VI)-induced toxicity. We have examined the effect of taurine, a simple sulphur-containing amino acid and an antioxidant, on potassium dichromate [K2Cr2O7, a Cr(VI) compound]-induced cytotoxicity and genotoxicity in human blood cells. Erythrocytes were treated with K2Cr2O7, either alone or after incubation with different concentrations of taurine. Treatment of erythrocytes with K2Cr2O7 alone led to marked increase in generation of reactive oxygen and nitrogen species, lipid and protein oxidation. This was accompanied by decrease in total sulfhydryl and glutathione content and lowered antioxidant power of the cells. This suggests that Cr(VI) induces oxidative stress in the cells. Incubation of erythrocytes with taurine prior to addition of K2Cr2O7, resulted in a concentration-dependent decrease in the generation of reactive oxygen and nitrogen species, mitigation of oxidative stress and amelioration of antioxidant power of these cells. It also restored the activities of several metabolic, antioxidant and membrane-bound enzymes. Cr(VI)-induced damage to erythrocyte membrane and lymphocyte DNA was also significantly attenuated by prior administration of taurine. These results suggest that taurine can function as a chemoprotectant against Cr(VI)-induced oxidative injury and can be potentially used to mitigate the toxic effects of this transition metal ion.
Keyphrases