Login / Signup

Quantifying the Relevance of Long-Range Forces for Crystal Nucleation in Water.

Renjie ZhaoZiyue ZouJohn D WeeksPratyush Tiwary
Published in: Journal of chemical theory and computation (2023)
Understanding nucleation from aqueous solutions is of fundamental importance in a multitude of fields, ranging from materials science to biophysics. The complex solvent-mediated interactions in aqueous solutions hamper the development of a simple physical picture, elucidating the roles of different interactions in nucleation processes. In this work, we make use of three complementary techniques to disentangle the role played by short- and long-range interactions in solvent-mediated nucleation. Specifically, the first approach we utilize is the local molecular field (LMF) theory to renormalize long-range Coulomb electrostatics. Second, we use well-tempered metadynamics to speed up rare events governed by short-range interactions. Third, the deep learning-based State Predictive Information Bottleneck approach is employed in analyzing the reaction coordinate of the nucleation processes obtained from the LMF treatment coupled with well-tempered metadynamics. We find that the two-step nucleation mechanism can largely be captured by the short-range interactions, while the long-range interactions further contribute to the stability of the primary crystal state under ambient conditions. Furthermore, by analyzing the reaction coordinate obtained from the combined LMF-metadynamics treatment, we discern the fluctuations on different time scales, highlighting the need for long-range interactions when accounting for metastability.
Keyphrases
  • deep learning
  • public health
  • mental health
  • machine learning