Environmental predictors for the restoration of a critically endangered coral, Acropora palmata, along the Florida reef tract.
Raymond B BanisterT Shay ViehmanStephanie SchopmeyerRobert van WoesikPublished in: PloS one (2024)
The population decline and lack of natural recovery of multiple coral species along the Florida reef tract have instigated the expanding application of coral restoration and conservation efforts. Few studies, however, have determined the optimal locations for the survival of outplanted coral colonies from restoration nurseries. This study predicts the optimal locations for Acropora palmata colonies along the Florida reef tract using a boosted-regression-tree model to examine the relationships between the occurrence of wild A. palmata and ten environmental variables. Our model results predicted A. palmata was most likely to occur in shallow reef habitats with (i) generally low mean chlorophyll-a concentrations (< 1 mg m-3), (ii) moderate fetch (3 kJ m-2), (iii) salinities between 20 and 37.5 ppt, (iv) temperatures between 20 and 32°C, (vi) low mean concentrations of total nitrogen (0.16 ppm), and (iv) irradiance between 26.5 and 53.5 mol m-2 s-1. The most suitable habitats for A. palmata were disproportionately allocated to reefs in Biscayne Bay, the Upper Keys, the western-lower Florida Keys, the Marquesas, and the Dry Tortugas. The middle Florida Keys had unfavorable environmental conditions for A. palmata habitat. Results from this study inform where A. palmata, outplanted as part of restoration and conservation efforts, would have suitable environmental conditions to persist over time. This study also provides decision-making support for management focused on the conservation and restoration of the endangered species A. palmata along the Florida reef tract.