Login / Signup

Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries.

Tianhong ZhouYan ZhaoJang Wook ChoiAli Coskun
Published in: Angewandte Chemie (International ed. in English) (2021)
Metallic lithium (Li) is regarded as the ideal anode material in lithium-ion batteries due to its low electrochemical potential, highest theoretical energy density and low density. There are, however, still significant challenges to be addressed such as Li-dendrite growth and low interfacial stability, which impede the practical application of Li metal anodes. In order to circumvent these shortcomings, herein, we present a gel polymer electrolyte containing imidazolium ionic liquid end groups with a perfluorinated alkyl chain (F-IL) to achieve both high ionic conductivity and Li ion transference number by fundamentally altering the solubility of salt within the gel electrolyte through Lewis-acidic segments in the polymer backbone. Moreover, the presence of F-IL moieties decreased the binding affinity of Li cation towards the glycol chains, enabling a rapid transfer of Li cation within the gel network. These structural features enabled the immobilization of anions on the ionic liquid segments to alleviate the space-charge effect while promoting stronger anion coordination and weaker cation coordination in the Lewis-acidic polymers. Accordingly, we realized a high Li ion conductivity (9.16×10-3  S cm-1 ) and high Li ion transference number of 0.69 simultaneously, along with a good electrochemical stability up to 4.55 V, while effectively suppressing Li dendrite growth. Moreover, the gel polymer electrolyte exhibited stable cycling performance of the Li|Li symmetric cell of 9 mAh cm-2 for more than 1800 hours and retained 86.7 % of the original capacity after 250 cycles for lithium-sulfur (Li-S) full cell.
Keyphrases
  • ionic liquid
  • ion batteries
  • solid state
  • room temperature
  • single cell
  • stem cells
  • cell therapy
  • binding protein
  • molecularly imprinted
  • signaling pathway
  • sensitive detection