Analyzing failures in adoption of smart technologies for medical waste management systems: a type-2 neutrosophic-based approach.
Ali Ebadi TorkayeshMuhammet DeveciSajjad Ebadi TorkayeshErfan Babaee TirkolaeePublished in: Environmental science and pollution research international (2021)
Medical waste management (MWM) systems are considered among the most important urban systems nowadays. Cities in different countries prefer to transform their infrastructure based on sustainability guidelines and practices. Meanwhile, smart technologies such as Internet of Things (IoT) and blockchain are being recently used in different urban systems of cities that aim to transform into smart cities. MWM systems are one of the main targets of integrating such smart technologies to maximize economic and social profits and minimize environmental issues. However, the transformation of traditional MWM systems into smart MWM systems and the adoption of such technologies can be a very resource-consuming task. One of the possible tasks in this process can be the identification of factors that cause failure in the adoption of smart technologies. Therefore, this study proposes a multi-criteria evaluation model based on type-2 neutrosophic numbers (T2NNs) to identify factors contributing to failure in the adoption of IoT and blockchain in smart MWM systems in Istanbul, Turkey. Results of the case study indicate that training for different stakeholders, market acceptance, transparency, and professional personnel are the main factors that lead to failure in the adoption of smart technologies. Training for different stakeholders, market acceptance, transparency, and professional personnel factors obtained distance values of 0.494, 0.381, 0.375, and 0.278, respectively, against the best factor which is security and privacy. In order to validate the results of the proposed approach, a sensitivity analysis test is performed. Results of this study can be useful for governmental and private MWM and green companies that are planning to adopt IoT and blockchain within their waste management (WM) system.