Stabilizing heavy metals (HMs) in sewage sludge is urgently needed to facilitate its recycling and reuse. Pyrolysis stands out as a promising method for not only stabilizing these metals but also producing biochar. Our research delves into the migration and transformation of specific HMs (Cr, Mn, Ni, Cu, Zn, As, and Pb) during co-pyrolysis under various conditions, including the presence and absence of microplastics (PVC and PET). We examined different concentrations of these plastics (1 %, 5 %, 10 %, and 15 %) and temperatures (300 °C, 500 °C, and 700 °C). Findings reveal that microplastics, particularly PVC, enhance the migration of Zn and Mn, leading to significant volatilization of Zn and Pb at higher temperatures, peaking at 700 °C. The increase in temperature also markedly influences HM migration, with As showcasing notable loss rates that climbed by 18.0 % and 16.3 % in systems with PET and PVC, respectively, as temperatures soared from 300 °C to 700 °C. Moreover, our speciation analysis indicates that microplastics aid in transforming certain HMs from unstable to more stable forms, suggesting their beneficial role in HM stabilization during pyrolysis. This study significantly enriches our understanding of microplastics' impact on HM behavior in sewage sludge pyrolysis, offering new avenues for pollution control and environmental management strategies.
Keyphrases
- sewage sludge
- heavy metals
- human health
- risk assessment
- health risk assessment
- health risk
- municipal solid waste
- computed tomography
- positron emission tomography
- climate change
- high glucose
- dna methylation
- gene expression
- endothelial cells
- wastewater treatment
- anaerobic digestion
- transition metal
- oxidative stress
- single cell
- diabetic rats
- life cycle