Login / Signup

Solar-assisted fabrication of large-scale, patternable transparent wood.

Qinqin XiaChaoji ChenTian LiShuaiming HeJinlong GaoXizheng WangLiangbing Hu
Published in: Science advances (2021)
Transparent wood is considered a promising structural and light management material for energy-efficient engineering applications. However, the solution-based delignification process that is used to fabricate transparent wood generally consumes large amounts of chemicals and energy. Here, we report a method to produce optically transparent wood by modifying the wood's lignin structure using a solar-assisted chemical brushing approach. This method preserves most of the lignin to act as a binder, providing a robust wood scaffold for polymer infiltration while greatly reducing the chemical and energy consumption as well as processing time. The obtained transparent wood (~1 mm in thickness) demonstrates a high transmittance (>90%), high haze (>60%), and excellent light-guiding effect over visible wavelength. Furthermore, we can achieve diverse patterns directly on wood surfaces using this approach, which endows transparent wood with excellent patternability. Combining its efficient, patternable, and scalable production, this transparent wood is a promising candidate for applications in energy-efficient buildings.
Keyphrases
  • cell wall
  • escherichia coli
  • optical coherence tomography
  • ionic liquid
  • low cost
  • tissue engineering
  • candida albicans