Login / Signup

Dynamics and Proton Conduction of Heterogeneously Confined Imidazole in Porous Coordination Polymers.

Linkun CaiJunsheng YangYuyan LaiYuling LiangRongchun ZhangCheng GuSusumu KitagawaPanchao Yin
Published in: Angewandte Chemie (International ed. in English) (2022)
The nanoconfinement of proton carrier molecules may contribute to the lowing of their proton dissociation energy. However, the free proton transportation does not occur as easily as in liquid due to the restricted molecular motion from surface attraction. To resolve the puzzle, herein, imidazole is confined in the channels of porous coordination polymers with tunable geometries, and their electric/structural relaxations are quantified. Imidazole confined in a square-shape channels exhibits dynamics heterogeneity of core-shell-cylinder model. The core and shell layer possess faster and slower structural dynamics, respectively, when compared to the bulk imidazole. The dimensions and geometry of the nanochannels play an important role in both the shielding of the blocking effect from attractive surfaces and the frustration filling of the internal proton carrier molecules, ultimately contributing to the fast dynamics and enhanced proton conductivity.
Keyphrases
  • electron transfer
  • escherichia coli
  • high resolution
  • pseudomonas aeruginosa
  • metal organic framework
  • quantum dots
  • candida albicans