Pyridine-Based Bipolar Hosts for Solution-Processed Bluish-Green Thermally Activated Delayed Fluorescence Devices: A Subtle Regulation of Chemical Stability and Carrier Transportation.
Yanmei HeZhenyang QiaoXinyi CaiMengke LiWei LiWentao XieWeidong QiuLiangying WangShi-Jian SuPublished in: ACS applied materials & interfaces (2020)
Versatile host materials with good chemical stability and carrier-transporting ability are quite responsible for achieving stable solution-processed thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs). Herein, we reported three bipolar dendritic hosts with or without the electron-withdrawing pyridine moiety via 6-site-linkages, namely, 3,3'-bis(3,3″,6,6″-tetra-tert-butyl-9'H-[9,3':6',9″-tercarbazol]-9'-yl)-1,1'-biphenyl (mCDtCBP), 3,3″,6,6″-tetra-tert-butyl-9'-(6-(3-(3,3″,6,6″-tetra-tert-butyl-9'H-[9,3':6',9″-tercarbazol]-9'-yl)phenyl)pyridine-2-yl)-9'H-9,3':6',9″-tercarbazole (mCDtCBPy), and 6,6'-bis(3,3″,6,6″-tetra-tert-butyl-9'H-[9,3':6',9″-tercarbazol]-9'-yl)-2,2'-bipyridine (mCDtCBDPy), exhibiting outstanding solubility, thermal stability as well as electrochemical stability. According to the calculation of bond dissociation energy (BDE), photodegradation results, and carrier dynamics evaluation, a significant relationship between device stability and the pyridine-based dendritic hosts was uncovered. Using mCDtCDPy with the highest electron mobility as the host, the solution-processed bluish-green TADF-OLED showed the shortest operational lifetime due to the unbalanced charge fluxes despite its highest anionic BDE for good chemical stability. However, the device based on mCDtCBPy exhibited twice longer lifetime than that based on mCDtCBP in spite of their similar balanced charge transportation, highlighting the importance of higher anionic BDE of the C-N bond in the device degradation process. Our findings unveiled a potential approach to achieve a subtle regulation of chemical stability and carrier transportation for realizing stable solution-processed TADF-OLEDs.