Activity Dependent Synaptic Plasticity Mimicked on Indium-Tin-Oxide Electric-Double-Layer Transistor.
Juan WenLi Qiang ZhuYang Ming FuHui XiaoLi Qiang GuoQing WanPublished in: ACS applied materials & interfaces (2017)
Ion coupling has provided an additional method to modulate electric properties for solid-state materials. Here, phosphorosilicate glass (PSG)-based electrolyte gated protonic/electronic coupled indium-tin-oxide electric-double-layer (EDL) transistors are fabricated. The oxide transistor exhibits good electrical performances due to an extremely strong proton gating behavior for the electrolyte. With interfacial electrochemical doping, channel conductances of the oxide EDL transistor can be regulated to different levels, corresponding to different initial synaptic weights. Thus, activity dependent synaptic responses such as excitatory postsynaptic current, paired-pulse facilitation, and high-pass filtering are discussed in detail. The proposed proton conductor gated oxide EDL synaptic transistors with activity dependent synaptic plasticities may act as fundamental building blocks for neuromorphic system applications.