Fluctuating environments during early development can limit adult phenotypic flexibility: insights from an amphibious fish.
Giulia S RossiPaige V CochranePatricia A WrightPublished in: The Journal of experimental biology (2020)
The interaction between developmental plasticity and the capacity for reversible acclimation (phenotypic flexibility) is poorly understood, particularly in organisms exposed to fluctuating environments. We used an amphibious killifish (Kryptolebias marmoratus) to test the hypotheses that organisms reared in fluctuating environments (i) will make no developmental changes to suit any one environment because fixing traits to suit one environment could be maladaptive for another, and (ii) will be highly phenotypically flexible as adults because their early life experiences predict high environmental variability in the future. We reared fish under constant (water) or fluctuating (water-air) environments until adulthood and assessed a suite of traits along the oxygen cascade (e.g. neuroepithelial cell density and size, cutaneous capillarity, gill morphology, ventricle size, red muscle morphometrics, terrestrial locomotor performance). To evaluate the capacity for phenotypic flexibility, a subset of adult fish from each rearing condition was then air-exposed for 14 days before the same traits were measured. In support of the developmental plasticity hypothesis, traits involved with O2 sensing and uptake were largely unaffected by water-air fluctuations during early life, but we found marked developmental changes in traits related to O2 transport, utilization and locomotor performance. In contrast, we found no evidence supporting the phenotypic flexibility hypothesis. Adult fish from both rearing conditions exhibited the same degree of phenotypic flexibility in various O2 sensing- and uptake-related traits. In other cases, water-air fluctuations attenuated adult phenotypic flexibility despite the fact that phenotypic flexibility is hypothesized to be favoured when environments fluctuate. Overall, we conclude that exposure to environmental fluctuations during development in K. marmoratus can dramatically alter the constitutive adult phenotype, as well as diminish the scope for phenotypic flexibility in later life.