π-Conjugated Polymer with Pendant Side Chains as a Dopant-Free Hole Transport Material for High-Performance Perovskite Solar Cells.
Zhiqing XieJeonghyeon ParkHyerin KimBo Hyeon ChoChetan LakshmanHo-Yeol ParkThavamani GokulnathYoung-Yong KimJinhwan YoonJe-Sung JeeYoung-Rae ChoSung-Ho JinPublished in: ACS applied materials & interfaces (2024)
Dopant-free polymeric hole transport materials (HTMs) have attracted considerable attention in perovskite solar cells (PSCs) due to their high carrier mobilities and excellent hydrophobicity. They are considered promising candidates for HTMs to replace commercial Spiro-OMeTAD to achieve long-term stability and high efficiency in PSCs. In this study, we developed BDT-TA-BTASi, a conjugated donor-π-acceptor polymeric HTM. The donor benzo[1,2-b:4,5- b ']dithiophene (BDT) and acceptor benzotriazole (BTA) incorporated pendant siloxane, and alkyl side chains led to high hole mobility and solubility. In addition, BDT-TA-BTASi can effectively passivate the perovskite layer and markedly decrease the trap density. Based on these advantages, dopant-free BDT-TA-BTASi-based PSCs achieved an efficiency of over 21.5%. Furthermore, dopant-free BDT-TA-BTASi-based devices not only exhibited good stability in N 2 (retaining 92% of the initial efficiency after 1000 h) but also showed good stability at high-temperature (60 °C) and -humidity conditions (80 ± 10%) (retaining 92 and 82% of the initial efficiency after 400 h). These results demonstrate that BDT-TA-BTASi is a promising HTM, and the study provides guidance on dopant-free polymeric HTMs to achieve high-performance PSCs.