Insight into Bile Duct Reaction to Obstruction from a Three-dimensional Perspective Using ex Vivo Phase-Contrast CT.
Wen-Juan LvXin-Yan ZhaoDou-Dou HuXiao-Hong XinLi-Li QinChun-Hong HuPublished in: Radiology (2021)
Background Biliary obstruction leads to an increase in biliary pressure within the biliary system, which induces the morphologic adaptation of the biliary tree. Purpose To observe and to quantify the morphologic characteristics of the adaptation in a bile duct ligation rat model and verify it in patients with biliary atresia in a three-dimensional (3D) manner using x-ray phase-contrast CT. Materials and Methods A bile duct ligation model was induced in 40 male Sprague-Dawley rats, which were divided into five groups: the control group (no ligation) and groups 2, 4, 6, and 8 weeks after bile duct ligation (eight animals in each group). Liver tissue samples (approximately 1.8 cm in length and 1.3 cm in height) were imaged by using phase-contrast CT and compared with histologic analysis. With a combination of phase-contrast CT and 3D visualization technology, the entire biliary system and the intrahepatic vascular system were quantitatively analyzed according to downstream, midstream, and upstream domains based on bile duct volume, surface area, and other parameters. Additionally, liver explant tissues from 28 patients with biliary atresia were studied to determine the impact of biliary tract reconstruction. Results To offset the increased biliary pressure within the biliary system, the ductular reaction in the downstream, midstream, and upstream domains manifested as dilatation, spiderweb-like looping, and interconnected honeycomb-like patterns, respectively. The most severe ductular reaction occurred in the upstream domain, and the relative surface area (mean, 0.02 μm-1 ± 0.01, 0.04 μm-1 ± 0.01, 0.07 μm-1 ± 0.02, and 0.10 μm-1 ± 0.02 for the 2-8-week groups, respectively; P < .01 among the groups) and volume fraction of ductules (mean, 16.54% ± 4.62, 19.69% ± 6.41, 26.92% ± 5.82, and 38.34% ± 10.36 for the 2-8-week groups, respectively; P < .01 among the groups except between the 2- and 4-week groups [P = .062]) significantly increased over time. In patients with biliary atresia, it was observed that both fibrosis and proliferative ductules regressed after successful biliary tract reconstruction following Kasai portoenterostomy. Furthermore, ductular reaction was accompanied by a progressive increase in the arterial supply but a loss of portal blood supply. Conclusion X-ray phase-contrast CT with three-dimensional rendering of the biliary system in a bile duct ligation rat model provides key insights into ductular reaction or biliary self-adaptation triggered by increased biliary pressure. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Vannier and Wang in this issue.