Hybrid Genome Assembly and Gene Repertoire of the Root Endophyte Clitopilus hobsonii QYL-10 (Entolomataceae, Agaricales, Basidiomycetes).
Long PengXiaoliang ShanYuchen WangFrancis MartinRytas VilgalysZhilin YuanPublished in: Molecular plant-microbe interactions : MPMI (2021)
Clitopilus hobsonii (Entolomataceae, Agaricales, Basidiomycetes) is a common soil saprotroph. There is also evidence that C. hobsonii can act as a root endophyte benefitting tree growth. Here, we report the genome assembly of C. hobsonii QYL-10, isolated from ectomycorrhizal root tips of Quercus lyrata. The genome size is 36.93 Mb, consisting of 13 contigs (N50 = 3.3 Mb) with 49.2% GC content. Of them, 10 contigs approached the length of intact chromosomes, and three had telomeres at one end only. BUSCO analysis reported a completeness score of 98.4%, using Basidiomycota_odb10 lineage data. Combining ab-initio, RNA-seq data, and homology-based predictions, we identified 12,710 protein-coding genes. Approximately, 1.43 Mb of transposable elements (3.88% of the assembly), 36 secondary metabolite biosynthetic gene clusters, and 361 genes encoding putative carbohydrate-active enzymes were identified. This genomic resource will allow functional studies aimed to characterize the symbiotic interactions between C. hobsonii and its host trees and will also provide a valuable foundation for further research on comparative genomics of the Entolomataceae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Keyphrases
- genome wide
- rna seq
- single cell
- copy number
- genome wide identification
- dna methylation
- electronic health record
- big data
- genome wide analysis
- data analysis
- transcription factor
- binding protein
- gene expression
- bioinformatics analysis
- smoking cessation
- preterm infants
- mass spectrometry
- artificial intelligence
- machine learning
- neural network
- high resolution