Login / Signup

Performance evaluation of sulfidated nanoscale iron for hexavalent chromium removal from groundwater in sequential batch study.

Mainak BhattacharyaNajmul Haque BarbhuiyaSwatantra Pratap Singh
Published in: Environmental science and pollution research international (2023)
Chromium [Cr] contamination in groundwater is one of the serious environmental concerns due to the carcinogenicity of its water-soluble and mobile hexavalent [Cr(VI)] form. In spite of the existence of multiple precipitation and adsorption-based Cr(VI) remediation technologies, the usage of sulfidated nano zerovalent iron (S-nZVI) has recently attracted researchers due to its high selectivity. Although S-nZVI effectively immobilized Cr(VI), its long-term performance in multiple shifted equilibrium has not been explored. In this contribution, influences of S-nZVI dosage, initial concentration of Cr(VI), pH, ionic strength, total hardness, sulfate, carbonate, and silicate were probed in ultrapure water. Further experiments were performed in synthetic groundwater to investigate the effects of initial concentration of Cr(VI) in the pH range of 4-8 for 1 g L -1 S-nZVI dosage. Cr(VI) removal rate was quantified in groundwater without pH fixation. Finally, a comparative study between conventional nano zerovalent iron (nZVI) and S-nZVI was conducted in sequential batch reactors to investigate their respective efficiencies during repeated usage. Mechanistic interpretation of the processes governing the immobilization of Cr(VI) was done by integrating the results of these experiments with the metadata. While aggregation due to magnetic properties and rapid oxidation of Fe decreased the efficiency of nZVI with repeated usage, sulfidation minimized the passivation and favored an extended reducing environment because of continuous electron transfer from iron and sulfur components.
Keyphrases