Reaction Mechanisms of Photoinduced Quinone Methide Intermediates Formed via Excited-State Intramolecular Proton Transfer or Water-Assisted Excited-State Proton Transfer of 4-(2-Hydroxyphenyl)pyridine.
Yan GuoXuyang LiJiani MaDavid Lee PhillipsPublished in: The journal of physical chemistry letters (2021)
Femtosecond and nanosecond transient absorption spectroscopies combined with theoretical calculations were performed to investigate the formation mechanisms of quinone methides (QMs) from 4-(2-hydroxyphenyl)pyridine (1). In acetonitrile (ACN), the singlet excited state of 1 (1(S1)) with the cis-form underwent a thermodynamically favorable and ultrafast ESIPT to produce the singlet excited state QM, which could either relax first into highly vibrational states of its ground state followed by hydrogen transfer to return to the starting compound or alternatively may undergo a dehydrogenation to produce a radical species (1-R). In ACN-H2O, 1(S1) interacted with water molecules to form a solvated species, which induced water-assisted ESPT to the pyridine nitrogen to generate the singlet excited state QM in a concerted asynchronous manner that was initiated by deprotonation of the phenolic OH. These results provide deeper insights into the formation mechanisms of QMs in different solvent environments, which is important in the application of QMs in biological and chemical systems as well as in the design of molecules for efficient QM formation.