Login / Signup

3D Graphene-Nanowire "Sandwich" Thermal Interface with Ultralow Resistance and Stiffness.

Lin JingRui ChengRaghav GargWei GongInkyu LeeAaron SchmitTzahi Cohen-KarniXu ZhangSheng Shen
Published in: ACS nano (2023)
Despite the recent advancements of passive and active cooling solutions for electronics, interfaces between materials have generally become crucial barriers for thermal transport because of intrinsic material dissimilarity and surface roughness at interfaces. We demonstrate a 3D graphene-nanowire "sandwich" thermal interface that enables an ultralow thermal resistance of ∼0.24 mm 2 ·K/W that is about 1 order of magnitude smaller than those of solders and several orders of magnitude lower than those of thermal greases, gels, and epoxies, as well as a low elastic and shear moduli of ∼1 MPa like polymers and foams. The flexible 3D "sandwich" exhibits excellent long-term reliability with >1000 cycles over a broad temperature range from -55 °C to 125 °C. This nanostructured thermal interface material can greatly benefit a variety of electronic systems and devices by allowing them to operate at lower temperatures or at the same temperature but with higher performance and higher power density.
Keyphrases
  • room temperature
  • carbon nanotubes