Login / Signup

Effects of the total dose and duration of γ-irradiation on the growth responses and induced SNPs of a Cymbidium hybrid.

Sang Hoon KimYeong Deuk JoJaihyunk RyuMin Jeong HongByoung-Cheorl KangJin-Baek Kim
Published in: International journal of radiation biology (2020)
Purpose: Ionizing radiation has been used for developing new cultivars of diverse plant species, including Cymbidium orchid species. The effects of the total dose on mutation induction have been investigated; however, there is relatively little research on the influence of the dose rate or irradiation duration.Materials and methods: Thus, we analyzed the effects of the total dose and irradiation duration on the growth of Cymbidium hybrid RB001 protocorm-like bodies (PLBs). We completed a genotyping-by-sequencing analysis to compare the induced SNPs among five γ-irradiated populations with similar growth responses (LD50) to γ-rays.Results: The optimal time to assess the effects of the γ-irradiation was at 6 months after the treatment. On the basis of the survival rate of γ-irradiated PLBs, the optimal doses (LD50) for each irradiation duration were estimated: 1 h, 16.1 Gy; 4 h, 23.6 Gy; 8 h, 37.9 Gy; 16 h, 37.9 Gy; and 24 h, 40.0 Gy. The estimated optimal doses were duration-dependent at irradiation durations shorter than 8 h, but not at irradiation durations exceeding 8 h. A SNP comparison revealed a lack of significant differences among the mutations induced by γ-irradiations.Conclusions: These results indicate the irradiation duration affects PLB growth in response to γ-rays. Moreover, the mutations induced by a short-term treatment may be similar to those induced by a treatment over a longer period.
Keyphrases
  • genome wide
  • radiation induced
  • single cell
  • radiation therapy
  • oxidative stress
  • diabetic rats
  • combination therapy
  • drug induced
  • single molecule