Efficient Active Sensing with Categorized Further Explorations for a Home Behavior-Monitoring Robot.
Wenwei YuKeigo NakahataGuang Hao SunAkio NamikiSayuri SuwaMayuko TsujimuraLe XieJinwu WangShao Ying HuangPublished in: Journal of healthcare engineering (2017)
Mobile robotics is a potential solution to home behavior monitoring for the elderly. For a mobile robot in the real world, there are several types of uncertainties for its perceptions, such as the ambiguity between a target object and the surrounding objects and occlusions by furniture. The problem could be more serious for a home behavior-monitoring system, which aims to accurately recognize the activity of a target person, in spite of these uncertainties. It detects irregularities and categorizes situations requiring further explorations, which strategically maximize the information needed for activity recognition while minimizing the costs. Two schemes of active sensing, based on two irregularity detections, namely, heuristic-based and template-matching-based irregularity detections, were implemented and examined for body contour-based activity recognition. Their time cost and accuracy in activity recognition were evaluated through experiments in both a controlled scenario and a home living scenario. Experiment results showed that the categorized further explorations guided the robot system to sense the target person actively. As a result, with the proposed approach, the robot system has achieved higher accuracy of activity recognition.