Login / Signup

ER as master regulator of membrane trafficking and organelle function.

Eva Maria WenzelLiv Anker ElfmarkHarald Alfred StenmarkCamilla Raiborg
Published in: The Journal of cell biology (2022)
The endoplasmic reticulum (ER), which occupies a large portion of the cytoplasm, is the cell's main site for the biosynthesis of lipids and carbohydrate conjugates, and it is essential for folding, assembly, and biosynthetic transport of secreted proteins and integral membrane proteins. The discovery of abundant membrane contact sites (MCSs) between the ER and other membrane compartments has revealed that, in addition to its biosynthetic and secretory functions, the ER plays key roles in the regulation of organelle dynamics and functions. In this review, we will discuss how the ER regulates endosomes, lysosomes, autophagosomes, mitochondria, peroxisomes, and the Golgi apparatus via MCSs. Such regulation occurs via lipid and Ca2+ transfer and also via control of in trans dephosphorylation reactions and organelle motility, positioning, fusion, and fission. The diverse controls of other organelles via MCSs manifest the ER as master regulator of organelle biology.
Keyphrases
  • endoplasmic reticulum
  • estrogen receptor
  • single cell
  • breast cancer cells
  • transcription factor
  • small molecule
  • escherichia coli
  • molecular dynamics simulations
  • single molecule