Login / Signup

In Situ SEM Torsion Test of Metallic Glass Microwires Based on Micro Robotic Manipulation.

Chenchen JiangHaojian LuKe CaoWenfeng WanYajing ShenYang Lu
Published in: Scanning (2017)
Microwires, such as metallic, semiconductor, and polymer microwires and carbon fibers, have stimulated great interest due to their importance in various structural and functional applications. Particularly, metallic glass (MG) microwires, because of their amorphous atoms arrangement, have some unique mechanical properties compared with traditional metals. Despite the fact that substantial research efforts have been made on the mechanical characterizations of metallic glass microwires under tension or flexural bending, the mechanical properties of microwires under torsional loading have not been well studied, mainly due to the experimental difficulties, such as the detection of torsion angle, quantitative measurement of the torsional load, and the alignment between the specimen and torque meter. In this work, we implemented the in situ SEM torsion tests of individual La50Al30Ni20 metallic glass (MG) microwires successfully based on a self-developed micro robotic mechanical testing system. Unprecedented details, such as the revolving vein-pattern along the torsion direction on MG microwires fracture surface, were revealed. Our platform could provide critical insights into understanding the deformation mechanisms of other microwires under torsional loading and can even be further used for robotic micromanufacturing.
Keyphrases
  • minimally invasive
  • high resolution
  • risk assessment
  • room temperature
  • single cell
  • quality improvement
  • sensitive detection
  • quantum dots
  • drinking water
  • hip fracture