Evaluating groundwater nitrate and other physicochemical parameters of the arid and semi-arid district of DI Khan by multivariate statistical analysis.
Asif KhanMuhammad NaeemIvar ZekkerMuhammad Balal ArianGreg MichalskiAbbas KhanNasrullah ShahSyed ZeeshanHameed Ul HaqFazle SubhanMuhammad IkramMuhammad Ishaq Ali ShahIdrees KhanLuqman Ali ShahMuhammad ZahoorAmama KhurshedPublished in: Environmental technology (2021)
Nitrate as an important water pollutant, causing eutrophication was analyzed in Pakistan at different water sources (hand pump (HP), bore hole (BH) and tube well (TW)) to assess the contamination level caused by NO3-. NO3- concentrations in the HP water samples were 31 mg L-1 to 59 mg L-1, in BH 20 mg L-1 to 79 mg L-1 while in TW water samples it was between 29 to 55 mg L-1. The association of NO3- with other selected parameter in groundwater can be determined by using statistical approaches. Different physicochemical parameters (pH, electrical conductivity (EC), temperature and dissolved oxygen (DO)) were studied in groundwater samples of the research district. The Pearson correlation coefficient (r) for groundwater characteristics were calculated. Hierarchical Cluster Analysis (HCA) was used to categorize samples based on their groundwater quality similarities and to find links between groundwater quality factors. The key relationship of the groundwater for HP samples on EC and TDS (r = 1) had a great correlation, while all other parameters correlations were lower (r = 0.40), BH's parameters on WT and WSD (r = 0.57), WT and pH (r = 0.57), EC and DO (r = 0.50), DO and TDS (0.50), EC and TDS (r = 1) had a quite high correlation, while all other parameters correlations were less than (r = 0.40), on the other hand, tube well parameters on TDS and EC (r = 1) had a perfect correlation, DO and pH (r = 0.75) parameters correlations were less than (r = 0.40).