Petroleum hydrocarbons degradation in contaminated soil using the plants of the Aster family.
Ricksy PrematuriNoor F MardatinRatna IrdiastutiMaman TurjamanTadao WagatsumaKeitaro TawarayaPublished in: Environmental science and pollution research international (2019)
Oil extraction is one of the causes of soil contamination with the total petroleum hydrocarbons. The objective of this study was to clarify the effect of Asteraceae plants on the degradation of petroleum hydrocarbon in contaminated soil. Initial soils with 40 and 90 g kg-1 of total petroleum hydrocarbon (TPH) were prepared. There were three treatments: (1) no addition, (2) addition of FeCl3 and nitrilotriacetic acid (NTA) solution, and (3) addition of FeCl3 + NTA and the cultivation of nine Asteraceae plants. The concentration of TPH was measured using infrared spectrophotometer, 2 and 3 months after transplanting (MAT). Shoot and root dry weights were measured 3 MAT. The concentration of TPH in soil cultivated with Cosmos caudatus was lower than that of the initial soil (40 g kg-1 TPH), 2 MAT. The concentrations of TPH in soils cultivated with Calendula officinalis, Callistephus chinensis, C. caudatus, and Tagetes sp. were also lower than that in the initial soil, 3 MAT. The concentrations of TPH in soils cultivated with Achillea filipendulina, Anthemis tinctoria, Tagetes erecta, Chrysanthemum coronarium, C. officinalis, C. chinensis, and C. caudatus were lower than that in the initial soil (90 g kg-1 TPH), 2 MAT. The concentrations of TPH in soils cultivated with T. erecta, A. tinctoria, Zinnia elegans, C. chinensis, C. caudatus, and Tagetes sp. were lower than that in the initial soil, 3 MAT. A. filipendulina and C. coronarium died at both 40 and 90 kg-1 TPH soils. These results suggest that the roots of Asteraceae plants degrade petroleum hydrocarbon in contaminated soil and C. chinensis and Z. elegans are more suitable for using TPH remediation. Plant survival and extensive root system are important factors for the remediation of TPH in contaminated soil.