Login / Signup

Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors.

Lucas Q FlaggConnor G BischakJonathan W OnoratoReem B RashidChristine K LuscombeDavid S Ginger
Published in: Journal of the American Chemical Society (2019)
We study poly(3-{[2-(2-methoxyethoxy)ethoxy]methyl}thiophene-2,5-diyl) (P3MEEMT), a new polythiophene derivative with ethylene glycol-based side chains, as a promising semiconducting polymer for accumulation-mode organic electrochemical transistors (OECTs) with figures of merit comparable to those of state-of-the-art materials. By characterizing the OECT performance of P3MEEMT transistors as a function of the anion, we find that large hydrophobic anions lower the threshold voltage. We find that, compared to poly(3-hexylthiophene-2,5-diyl) (P3HT), P3MEEMT has faster anion injection rates, which we attribute to the hydration of the P3MEEMT crystal lattice. We study P3MEEMT-based OECT and organic field-effect transistor (OFET) performance as a function of film crystallinity and show that changing the crystallinity of the polymer by thermal annealing increases the OFET mobility yet decreases the OECT mobility. We attribute this difference to the fact that, unlike OFETs, OECTs operate in aqueous environments. To probe how hydration affects the operation of OECTs, we investigate the role of water in electrochemical doping using electrochemical quartz microbalance (EQCM) gravimetry. We find that steady-state hydration and hydration dynamics under electrochemical bias differ dramatically between the crystalline and amorphous P3MEEMT films. These results suggest that the presence of water reduces the electronic connectivity between the crystalline regions of P3MEEMT, thus lowering the mobility in solution. Overall, our study highlights the importance of the role of polymer hydration and nanoscale morphology in elucidating design principles for OECT operation.
Keyphrases
  • ionic liquid
  • room temperature
  • gold nanoparticles
  • molecularly imprinted
  • label free
  • multiple sclerosis
  • reduced graphene oxide
  • water soluble
  • high speed
  • atomic force microscopy